Antibiotic Resistant Microbes

Before antibiotics, it is estimated that 50 percent of people died from infections. Now, after 75 years of use, statistics reveal that every year at least 2.8 million people are hospitalized with an antibiotic-resistant bacterial infection, which according to 2019 statistics result in at least 48,700 deaths in the United States alone.1 It is worth mentioning 5 percent of hospital patients (about 2 million) who are admitted for routine procedures become infected at some point during their stay.

How’d We Get Here?

Discovered by Scottish biologist Alexander Fleming in 1928, by the mid 1940’s, penicillin, a mold-derived antibiotic became available for commercial use. “In 1945 the Nobel Prize for Physiology and Medicine was awarded to Alexander Fleming and Howard Florey for their discovery of the antibiotic substance benzylpenicillin from the mould Penicillium notatum.”2

Escherichia coli

The threat of microbial resistance to antibiotics is rapidly increasing each year with devastating effects. These “superbugs” are outracing the drug industry’s ability to keep up with the need. While it may take a human 20 years to reproduce offspring, a bacterium such as E. coli can replicate every twenty minutes!

We’ve Known About this for
Nearly 100 Years!

Bacteria becoming resistant to antibiotics, should not come as a surprise. In his book Herbal Antibiotics, Steven Harrod Buhner writes “Dr. Fleming noted as early as 1929 in the British Journal of Experimental Biology that numerous bacteria were already resistant to the drug he had discovered, and by 1945 he warned in a New York Times interview that improper use of penicillin would inevitably lead to the development of resistant bacteria.”

How Does It Happen?

Bacterial cell division depicting daughter cells receiving both a copy of the chromosome and a copy of a plasmid. Public Domain

Antibiotic resistance occurs because bacteria are able to share genetic material just by being in close proximity to one another.  The genetic material is communicated very quickly in little packages called plasmids.

The word antibiotic when broken down simply means anti ‘against’ and biotic ‘life’. At its core an antibiotic’s design is to function ‘against life’. Its use is intended to kill off certain problematic bacteria. However, antibiotics annihilate most microbes in their path. Microbes have the ability to adapt to hostile elements such as antibiotics while remaining in their environment. What a statement to resiliency in life.

Fluoroquinolones…

It is alarming how many bacterial species are still becoming resistant to the group of antibiotics called fluoroquinolones (‘fluoro’ because they contain fluoride) that can cause very debilitating side-effects.

Ciprofloxacin Molecule

One example, Cipro (Ciprofloxacin) is a lab-derived chemical structure used as a broad-spectrum antibiotic. Cipro’s “superpower” is that it can destroy anthrax bacillus anthracis bacteria as well as eliminate many other varieties of bacteria (including the helpful ones) because it targets an enzyme essential for DNA transactions that is common to all bacteria.

Intent to keep ahead of the rapidly mutating bacteria, pharmaceutical companies have modified the chemical structure of fluoroquinolones but have been mostly unsuccessful. The Merck Manual states “Many newer fluoroquinolones have been withdrawn from the US market because of toxicity; they include trovafloxacin (because of severe hepatic toxicity), gatifloxacin (because of hypoglycemia and hyperglycemia), grepafloxacin (because of cardiac toxicity), temafloxacin (because of acute renal failure, hepatotoxicity, hemolytic anemia, coagulopathy, and hypoglycemia), and lomefloxacin, sparfloxacin, and enoxacin.”3

Conventional Medicine…

The most well-known use of antibiotics occurs as a medicine when a person suffering from a microbial infection visits a hospital or doctor. “A national survey of antibiotic use done by CDC’s Emerging Infections Programs identified key opportunities to reduce inappropriate use. This study found that two out of three antibiotics in hospitals are given for three conditions: pneumonia, urinary tract infections (including bladder and kidney infections), and skin infections.”4

In another study done in 2016, “CDC experts found that overall rates of antibiotic use in U.S. hospitals did not change from 2006-2012. More than half of patients received at least one antibiotic during their hospital stay.  However, there were significant changes in the types of antibiotics prescribed with the most powerful antibiotics being used more often than others.”5

Due to the overuse of antibiotics the threat of antibiotic-resistant microbes looms large in the healthcare industry. The following three-page document linked to the image below is offered for your convenience. The data has been provided by the CDC.

Click the image to view, download, or print the full PDF.

Digging Deeper

The antibiotic discovered by Alexander Fleming was derived from the mold Penicillium chrysogenum. This mold naturally produces the antibiotic with the familiar name, penicillin. Industrially produced by fermentation, penicillin is known to have a high therapeutic index that does not negatively effect human cells.

The modern production of antibiotics now occurs in a lab by one of two methods. The first, semi-synthetic production includes natural fermentation plus laboratory involvement of adding an amino group (NH2) to the R group of penicillin. One result from this production method is the well-known antibiotic named ampicillin.

The second ‘synthetic’ method of antibiotic production occurs solely in a lab. There are no natural antibiotic substances used. The quinalone class of antibiotics are made in this way.

The overuse (misuse) of antibiotics in medicine, is considered a primary cause of antibiotic resistance, however, it is only one of three major routes of exposure. Another that deserves a serious look are the animal husbandry practices that affect our meat supply.

Factory Farmed Animals…

Public Domain

Antibiotics added to animal feed have been used in farming to cause animals to grow bigger and faster by converting the same amount of feed into muscle more quickly.

They are also used to counter the stress that animals are placed under when expected to grow in overcrowded and unsanitary conditions. The constant stress of these conditions breaks down the animal’s immune system making it more prone to disease that ultimately will require antibiotics.

Antibiotics fed to animals affects the bacteria in their body as well. Antibiotic-resistant microbes lodge in their bones and meat and cause imbalances in gut microbes, just as with humans.

When people ingest antibiotic-resistant bacteria
via improperly cooked meat and become ill,
they may not respond favorably to antibiotic treatment.

Antibiotic-resistant microbes can enter the human or animal microbiome orally, via injection, or through inhaled by aerosolization. What is especially disturbing is that antibiotic resistant organisms are finding their way into the remotest areas of the earth. While three percent of wild penguins have antibiotic-resistant bacteria, close to 50 percent of captive penguins in Antarctica have been identified with it.

“In one study published in the New England Journal of Medicine on February 6, 2002, researchers found links that strongly suggested that the people who developed Cipro-resistant bacteria had acquired them by eating pork that were contaminated with salmonella. The report concluded that salmonella resistant to the antibiotic fluoroquine can be spread from swine to humans, and, therefore, the use of fluoroquinolones in food animals should be prohibited.”6

“Another New England Journal of Medicine study from Oct. 18, 2001, found that 20 percent of ground meat obtained in supermarkets contained salmonella. Of that 20 percent that was contaminated with salmonella, 84 percent was resistant to at least one form of antibiotic.”6

Australian scientist Michelle Power states, “about three-quarters of the antibiotics that humans take are actually excreted, ending up in wastewater systems. Places where antibiotics are manufactured are also potential avenues for escape of antibiotics. And then there are the times when animals are taken into care, or raised in captivity and exposed to humans, and then released into the wild. ‘We are seeing a variation in the prevalence [of antibiotic-resistant bacteria] across different wildlife species but why that is the case, we are not sure”.7

Still there is another mode of exposure that is equally as significant yet has been largely ignored. Antibiotics have been routinely used for decades to control bacterial and fungal diseases in plants.

Agricultural Crops…

In a study published in CABI Agriculture and Bioscience, Dr. Philip Taylor and his researchers “found that 11 antibiotics (often blended together) are being recommended on crops grown in the Americas, Eastern Mediterranean, Southeast Asia and the Pacific Rim countries…

There is considerable attention paid to the medical and veterinary use of antibiotics, but there is a paucity of data on their use in global crop production. The only well-documented use of antibiotics on crops is that on top fruit in the U.S. These data appear to indicate that the use of antibiotics in crop production is more extensive than most of the literature would suggest.”8

Vegetables grown in unfertilized soil were equally shown
to harbor antibiotic-resistant bacteria and resistance
determinants that naturally occur in soils. 9, 10

Not only are these crop-sprayed antibiotics that are making their way into the food supply of people and animals, the earth’s waterways are being contaminated through runoff and the microbiome of the soil is being disrupted throughout the world.

The Root of the Problem

The isolation of plant constituents separate out a natural chemical that can be patented and manufactured or synthesized in a laboratory to create a product with more problems than it generally solves. These ‘problems’ are called as side-effects. However, in the case of antibiotics there are also effects on bacteria, fungus, or even enzymes whose response has been changed due to frequent and excessive antibiotic exposure.

How “Antibiotic” Herbs Can Help

An herbal remedy generally consists of one or more plants and the entirety of their chemical makeup. These chemicals are uniquely designed to work in unique synergistic combinations as both an offense and a defense that the plant needs to flourish in its life-cycle.

Over 5,000 distinct plant constituents (the chemical parts of plants) have been identified to date, however, there are thousands more that have yet to be identified. A single plant can have anywhere from 200 to 3,000 constituents! The complexity is simply mind-boggling.

How this natural synergistic combination of plant chemicals work, is unique to each herb and multiplied exponentially when various herbs are used together. The mechanisms of how this works is a wonderful mystery that is only just beginning to become unraveled.

Smart Herbs!

The action of herbs is not antibiotic (against life) in the truest sense of the word. Herbs are considered anti-microbial in a much broader sense as they may affect bacterium, fungi, and even protozoa yet do not destroy those organisms beneficial to the body and its vitality. Perhaps they could better be thought of as “smart herbs”. How they differentiate is amazing, but unknown.

Lemon Balm
Melissa officinalis

A study published in the May 2015 Global Advances in Health and Medicine Journal offered 104 patients with Small Intestinal Bacteria Overgrowth (SIBO) their choice of either four weeks of antibiotic (rifaximin) or herbal therapy.

The herbs used in the herbal therapy were a proprietary mix of Oregano Origanum vulgare, Wormwood Artemisia absinthium, Lemon Balm Melissa officinalis, Goldthread Coptis chinensis root, Indian Barberry Berberis aristata root extract, Horsetail Equisetum arvense L., Thyme Thymus vulgaris, and Olive Olea europaea.

Horsetail
Equisetum arvense L.

The results were encouraging as the research found that “Herbal therapies are at least as effective as rifaximin for resolution of SIBO by LBT. Herbals also appear to be as effective as triple antibiotic therapy for SIBO rescue therapy for rifaximin non-responders.”11 ‘Rescue therapy’ is the term used in this study when the first 4-week course of rifaximin did not resolve the patient’s SIBO and the patient then chose the four-week herbal therapy.

Antimicrobial herbs have properties which are active against two or more groups of pathogenic microorganisms such as bacteria, fungi, protozoa, etc. There are many herbs with antimicrobial properties. The following is a short list of herbs with demonstrated antimicrobial actions. There are many more that have not been included.

  • Acacia spp., Acacia 12 13
  • Achillea spp., Yarrow 14 15
  • Agrimonia eupatoria, Agrimony 16
  • Allium sativum, Garlic 17 18 19
  • Aloe vera, Aloe 20 21
  • Arctostaphylos ua-ursi, Uva-ursi 22 23
  • Cryptolepsis sanguinolenta, Cryptolepsis 24 25
  • Curcuma longa, Turmeric 26
  • Cymbopogon citrates, Lemongrass 26
  • Echinacea spp., Echinacea 27 28
  • Eucalyptus spp., Eucalyptus 29 30
  • Hydrastis canadensis, Goldenseal 31 32
  • Hypericum alpestre, St. John’s Wort 16
  • Juniperus spp., Juniper 33 34
  • Mahonia spp., Oregon Grape 35 36
  • Melaleuca alternifolia, Tea Tree 37 38
  • Origanum vulgare, Oil of Oregano 15
  • Tinctura propolisi, Propolis 41 42
  • Rumex obtusifolius, Bitterdock or Broad-leaved Dock 16
  • Salvia Spp., Sage 39 40
  • Sanguisorba officinalis, Great Burnet 16
  • Usnea spp., Usnea 43 44
  • Withania somnifera, Indian Ginseng 20, 26
  • Zingiber officinale, Ginger Root 26

Please share your thoughts with us in the comment section below.

Leave a Reply